

SINGAPORE CHINESE GIRLS' SCHOOL **PRELIMNARY EXAMINATION 2020** SECONDARY FOUR

CLASS	4	REGISTER NUMBER	
CENTRE NUMBER		INDEX NUMBER	
PHYSICS			6091/2
Friday	28 August 2020)	1 hour 45 mins
Candidates answer on No Additional Material			

Section A

Answer all questions.

Section B

Answer all questions. Question 11 has a choice of parts to answer.

Candidates are reminded that all quantitative answers should include appropriate units. The use of an approved scientific calculator is expected, where appropriate. Candidates are advised to show all their working in a clear and orderly manner, as more marks are awarded for sound use of Physics than for correct answers. The number of marks is given in brackets [] at the end of each question or part question.

Take g = 10 ms⁻² or 10 Nkg⁻¹ unless stated otherwise.

For Examiner	s Use
Section A	50
Section B	30
Total	80

This question paper consists of 23 printed pages and 1 blank page.

SECTION A Answer all the questions in this section.

1 Fig. 1 shows a toy car that is given a brief initial push which sends it along a horizontal section of a runway. The car then accelerates down the ramp A. In this question the only force due to friction acting on the car is air resistance.

	Fig. 1	
(a)	On the drawing of the car shown moving down the ramp A, draw labelled arrows to show	
	(i) the direction of the force due to gravity on the car,	[1]
	(ii) the direction of the force due to friction on the car.	[1]
(b)	Using Newton's Laws, state and explain briefly the effect that friction has on the motion of the car	
	(i) while the car is moving along the horizontal section,	[2]
	Colorina (Colorina Colorina Co	
	(ii) while the car is accelerating down the ramp.	[1]
	(iii) In reality, a real car will not be able to accelerate indefinitely down a long slope- the car will eventually achieve maximum speed. Explain why this is so.	[2]

Fig. 2 below shows the passage of a ray of white light into a semi-circular glass block. The ray meets the straight side of the block at O, the centre of the semi-circle. The incident angle, i, is less than the critical angle.

Fig. 2

- (a) As the light meets the straight side of the block, part of the light is reflected and the rest of the light is refracted.
 - (i) On Fig. 2, draw rays which show the reflection and refraction of the light at O.

(ii)	Explain why a spectrum may be seen in the light that is refracted.	[2]

iii) Explain why the reflected light remains white.	

[1]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
***************************************		**

b)	The	e angle of incidence, i, at O, is increased until total internal reflection occurs.	
	(i)	State what is meant by total internal reflection.	[1]
	(ii)	In the space below, draw a labelled diagram to show how an optical fibre makes use of total internal reflection.	[1]

3 Fig. 3 shows a heater used in homes during winter to keep the room warm.

Fig. 3

- (a) State the main processes of heat transfer by the heater to warm up the whole room.
- (b) The heater is switched on in a bedroom. The bedroom has dimensions 5.0 m by 4.0 m by 3.0 m. At room temperature, the density of air is 1.25 kg/m³.
 - (i) If the heater operates at 500 W, calculate the energy produced by the fan in [2] one hour.

energy =

(ii) Calculate the mass of air in the bedroom.

mass of air =

[1]

(c) Should the fan heater be placed at the top or at the bottom of the bedroom? [2] Explain your answer in terms of density changes.

4 Fig. 4.1 below shows the arrangement for supplying power to a train engine. A 25 kV supply is used and the return current from the engine returns through the track. A schematic diagram of the arrangement is shown as Fig. 4.2.

Fig. 4.1

Assume that the resistance per kilometer of the overhead wire is 0.344 Ω and the resistance of the track is negligible.

- a) When the engine is 30 km from the power supply, it is supplied with a current of 180 A. Calculate
 - the resistance of the overhead wire between the power supply and the [1] engine,

resistance of	the overhead	wire =	

(ii) the potential difference across the overhead wires,

[2]

potential difference across the overhead wire =

(iii) the potential difference across the engine, and

[1]

potential difference across the engine =

(iv) the power supply to the engine.

power supply =

(b) As the train continues on its journey, the distance of the engine from its starting point increases. Suggest how the distance travelled affects the performance of the engine.

A railway employee touches the track through which there is a current of 180 A. [1]
He does not get an electric shock. Explain why.

5 Fig. 5.1 shows a 2.0 m uniform plank in equilibrium. The plank is supported by two spring balances at P and Q which are located 30 cm and 80 cm from each end respectively.

Fig. 5.1

-) Define the term centre of gravity. [1]
- (b) If the weight of the plank has an anti-clockwise moment of 20 Nm about Q, [2] calculate the reading of the spring balance at P.

reading of the spring balance at P =

(c) A heavy object of unknown weight is now hung 10 cm to the right of Q, as shown in Fig. 5.2.

(i)	Using the <i>Principle of Moments</i> , explain why the reading of the spring balance at P may register 0 N after the heavy object is hung 10 cm from Q.	[1]
(ii)	Calculate the maximum possible weight of the object such that the plank	[1]

maximum possible weight =

Two vertical metal plates are connected to a high voltage power supply as shown in Fig. 6.1. An electric field exists between the plates.

Fig. 6.1 Fig. 6.2

- (i) State what is meant by the electric field between the plates. [1]
 - (ii) On Fig. 6.1, draw lines of force to show the electric field between the two plates.
- (b) An uncharged metal ball is hung halfway between the two plates, as shown in Fig. 6.2. An enlarged view of the uncharged metal ball is shown in Fig. 6.3.

On Fig 6.3,

- (i) draw the distribution of charge that will be found on the metal bail.
- (ii) draw lines of force to show the new electric field between the plates.

remains in equilibrium.

[1]

[1]

The power supply is switched off and the uncharged metal ball is shifted slightly to the left as shown in Fig. 6.4. When the power supply is switched on again, the metal ball is observed to oscillate back and forth between the two plates, touching each plate in turn.

Fig. 6.4

 Explain the behaviour of the metal ball.
The second of the land of the second of the

[2]

7 Fig. 7.1 shows a circuit with a battery of e.m.f. 6.0 V and negligible internal resistance. R_1 and R_2 are resistors of 150 Ω and 300 Ω respectively. V is a high resistance voltmeter and A is an ammeter of negligible resistance.

Fig. 7.1

(a) What are the ammeter and voltmeter readings when the positive terminal of the voltmeter is connected to point F? [2]

Ammeter reading: Voltmeter reading:

(b) The circuit is now changed by connecting in parallel, a thermistor R₁ in series with a resistor R₂ of 1200 Ω as shown in Fig. 7.2.

At room temperature of 25°C, the resistance of the thermistor R_1 is 3600 Ω . When the temperature is 80°C, its resistance is 1200 Ω .

(i) Determine the ammeter and voltmeter readings at room temperature.

Ammeter reading: Voltmeter reading:

(ii) State the voltmeter reading when the temperature is 80°C. [1]

Voltmeter reading:

[3]

(iii) The voltmeter is replaced by a lamp. State and explain how the brightness of [2] the bulb changes as the temperature falls from 80°C to 25°C.

.....

8 The device shown in Fig. 8.1 uses the reflection of ultrasound to measure distances.

Fig. 8.

a)	State what is meant by ultrasound.	[2

(b) Fig. 8.2 shows a builder using the ultrasound device to measure the width of a room.

Fig. 8.2

The ultrasound device is placed against one side of the wall and it emits an ultrasound wave that reflects back from the opposite side of the wall. The time between sending out the ultrasound wave and receiving the reflection is 0.030 s. The speed of ultrasound in air is 340 m/s.

Calculate the distance between the device and the opposite wall.

distance	=	***************************************	[2]
aiotarioo		***************************************	[4]

SECTION B

Answer all the questions in this section.

Answer any one of the two alternative questions in Question 11.

9 Read the passage carefully and answer the questions that follow.

The microwave oven is now commonly used in kitchens to quickly heat up pre-prepared and fresh food. It produces microwave radiation of frequency 2500 MHz that is absorbed by water molecules. The water molecules have charge distributions which are not symmetric. When the electromagnetic field in the microwave radiation is incident on them, the water molecules increase in vibration. The microwaves can only penetrate a short distance inside the food.

The typical power in the microwave beam is 750 W. Over each distance of 3 mm, the power available from the microwave decreases by 60%.

(a)	Explain what is meant by a frequency of 2500 MHz.	[1]
(b)	Calculate the wavelength of the microwave used in the microwave oven.	[2]

Wavelength of the microwave =

(c) Use information in the passage to sketch a graph showing how the power available [3] from the microwave varies with depth. Plot points at depths of 0, 3, and 6 mm on Fig. 9.1. Draw the line of best fit for these plotted points.

Fig. 9.1

(d) Estimate, from your graph drawn in (c), the power available at depth of 5 mm.

(e) Estimate the minimum time it will take a 750 W microwave oven to thaw 0.25 kg of frozen soup. The soup is initially at -18 °C and is to be just turned into liquid at 0 °C. The soup can be assumed to be made entirely of water. Take the specific heat capacity of ice as 2100 J/(kg °C) and the specific latent heat of fusion of ice as 340 000 J/kg.

Minimum	time	to	thaw	the	frozen	soup	=	

Fig. 10.1 shows a simple experimental set-up to study the motion of a motor. AB and CD are solenoids connected to a battery. F and G are connected to an external voltage supply.

(a)	Identify the magnetic poles at B and C	[1]
	B:	
	C:	
(b)	The coil PQRS is tilted at an angle, as shown in Fig. 10.1.	
	(i) Explain why the coil turns when F and G are connected to the external voltage supply.	[2]

[1]

(iii) Explain why the coil continues to turn in the same direction when it has turned 180°.	[2]
(i) The gaps between the split rings are increased. Even though the carbon brushes do not touch the split rings when the split rings reach the gap, the motor still continues to rotate. Explain.	[1]
(ii) The power supply to the coil PQRS is increased. Explain whether there is a change to the frequency of rotation.	[1]
A student suggested that decreasing the horizontal distance between the solenoids AB and CD will cause the coil PQRS to turn faster. State and explain if you agree with the student.	[2]
	(ii) The gaps between the split rings are increased. Even though the carbon brushes do not touch the split rings when the split rings reach the gap, the motor still continues to rotate. Explain. (ii) The power supply to the coil PQRS is increased. Explain whether there is a change to the frequency of rotation. A student suggested that decreasing the horizontal distance between the solenoids AB and CD will cause the coil PQRS to turn faster. State and explain if

(ii) On Fig. 10.1, draw and label the forces acting on the coil PQRS.

11 EITHER

11 (a) Define displacement. [1]

(b) Fig. 11.1 shows a velocity-time graph for a journey of a particle lasting 40 s.

Fig. 11.1

(i) Describe the motion of the particle from t = 20 s to t = 35 s. [3]

(ii) Calculate

the total displacement travelled by the particle,

total displacement =

2. the average velocity of the particle from t = 0 s to t = 40 s. [1]

average velocity =

11 OR

An object A of mass 500 g moved down a slide from a vertical height of 3.0 m as shown in Fig. 11.3. Object A was released with an initial speed of 5.0 m/s and its speed at the lowest point L was 8.0 m/s.

Fig. 11.3

(a) Calculate the kinetic energy of object A when it was released.

[1]

kinetic energy =

(b) Determine the loss in gravitational potential energy when object A moved to the lowest point of the slide. [1]

loss in gravitational potential energy =

(c) Determine the average work done against friction as object A moved to the lowest [2] point.

average work done against friction =

21

(d) At the lowest point of the slide, an arresting device was placed as shown in Fig. 11.4. The function of the arresting device was to stop object A at the lowest point of the slide.

(i) Define power. [1]

(ii) The speed of object A just before it collided with the arresting device was [2] 8.0 m/s. If it took 0.25 s for the arresting device to completely stop object A, determine the average power dissipated during collision with the arresting device. The arresting device does not move during the collision.

	average power =	
) State the energy conversion during the arresting device.	collision between object A and the	[1]

.....

(e) A student places the arresting device on a flat table and draws two forces acting on the device. Fig. 11.5 shows the two forces drawn by the student.

(i)	Explain why the two forces drawn by the student do not form an action-reaction pair.	[1]
(ii)	In Fig. 11.5, the Earth exerts a force of 25 N on the arresting device resting on the table. This is one force in an action-reaction pair.	[1]
	Describe the other force in the pair.	

END OF PAPER

2020 4OLP PHYSICS PRELIM PHYSICS 6091

PAPER 1

1	D	2	В	7.	1-				
6	-	-	В	3	C	4	A	5	С
•	В		C	8	С	9	C	10	Α
11	A	12	D	13	В	14	С	15	A
16	D	17	C	18	D	19	C	20	A
21	В	22	С	23	D	24	A	25	C
26	D	27	Α	28	A	29	A	30	В
31	В	32	С	33	A	34	В	35	В
36	C	37	D	38	В	39	D	40	В

1

PAPER 2 SECTION

Qn	Suggested solution	Mark	Remark
1(a)	horzontal section (ii) force due to friction (i) force due to gravity	2	1 (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
(b)(i)	1 m each The car decelerates/ decreases its speed. [1] It experiences a negative resultant force, which causes a negative acceleration/deceleration [1] (from Newton's 2^{nd} Law, $F_R = ma$).	2	2 2 2 1
(ii)	The component of the weight along the slope is greater than the air resistance; as such it experiences a resultant force downward, [1] from Newton's 2^{nd} Law, $F_R = ma$, it experiences an acceleration.	1	0
(iii)	In reality as the car increases in speed, the air resistance increases and hence F_{net} decreases. [1] Since F_{net} = ma, F_{net} decreases causes the acceleration to decrease. Eventually F_{net} = 0 and hence it experiences zero acceleration and the car moves with a constant speed. [1]	2	sal) (m
		54	

Colorect to get 1m South effected and refracted rays correct.	21.10		_	
(ii) White light	Z(a)(1)	retracted ray	1	
(ii) White light consists of different colours and each colour is refracted at a different speed [1] causing the colours to disperse (bends different)y as they pass from one optically dense medium to another. [1] (iii) In reflection, there is no change in the medium so there is no change in speed resulting in no dispersion of the white light. (b)(i) Total internal reflection is the complete reflection of a light ray inside an optically dense medium at its boundary with an optically less dense medium. (ii) Infrared radiation and convection [1] (b)(ii) E = (500)(60)(60) [1] = 1.8 × 10° J [1] (c) What of air = 5 × 4 × 3 × 1.25 = 75 kg [1] (c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total (iii) Pd across the wires = 180 x 10.32 = 1850 V or 1800 V 2 (iii) Pd across engine = 25 000 - 1854 = 23.1 kV 1		al desire		
(ii) White light consists of different colours and each colour is refracted at a different speed [1] causing the colours to disperse (bends differently) as they pass from one optically dense medium to another, [1] (iii) In reflection, there is no change in the medium so there is no change in speed resulting in no dispersion of the white light. (b)(i) Total internal reflection is the complete reflection of a light ray inside an optically denser medium at its boundary with an optically less dense medium. (ii) (iii) Infrared radiation and convection [1] (b)(ii) E = (500)(60)(60) [1] 1 (b)(ii) E = (500)(60)(60) [1] 1 (iii) Mass of air = 5 × 4 × 3 × 1.25 = 75 kg [1] (c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] 10tal 4(a)(ii) Pd across the wires = 180 x 10.32 = 1850 V or 1800 V 2 (iii) Pd across engine = 25 000 - 1854 = 23.1 kV 1	ĺ			rays correct.
(ii) White light consists of different colours and each colour is refracted at a different speed [1] causing the colours to disperse (bends differently) as they pass from one optically dense medium to another. [1] (iii) In reflection, there is no change in the medium so there is no change in speed resulting in no dispersion of the white light. Total internal reflection is the complete reflection of a light ray inside an optically denser medium at its boundary with an optically less dense medium. (ii) Infared radiation and convection [1] (Both correct to award 1m) (b)(i) E = (500)(60)(60) [1] = 1.8 × 10° J [1] (c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total 4(a)(ii) Pd across engine = 25 000 – 1854 = 23.1 kV		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
(ii) White light consists of different colours and each colour is refracted at a different speed [1] causing the colours to disperse (bends differently) as they pass from one optically dense medium to another. [1] (iii) In reflection, there is no change in the medium so there is no change in speed resulting in no dispersion of the white light. Total internal reflection is the complete reflection of a light ray inside an optically denser medium at its boundary with an optically less dense medium. (ii) Infared radiation and convection [1] (Both correct to award 1m) (b)(i) E = (500)(60)(60) [1] = 1.8 × 10° J [1] (c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total 4(a)(ii) Pd across engine = 25 000 – 1854 = 23.1 kV	- 1			
(ii) White light consists of different colours and each colour is refracted at a different speed [1] causing the colours to disperse (bends differently) as they pass from one optically dense medium to another. [1] (iii) In reflection, there is no change in the medium so there is no change in speed resulting in no dispersion of the white light. Total internal reflection is the complete reflection of a light ray inside an optically denser medium at its boundary with an optically less dense medium. (ii) Infared radiation and convection [1] (Both correct to award 1m) (b)(i) E = (500)(60)(60) [1] = 1.8 × 10° J [1] (c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total 4(a)(ii) Pd across engine = 25 000 – 1854 = 23.1 kV		ray of		
 (ii) While light consists of different colours and each colour is refracted at a different speed [1] causing the colours to disperse (bends differently) as they pass from one optically dense medium to another. [1] (iii) In reflection, there is no change in the medium so there is no change in speed resulting in no dispersion of the white light. (b)(i) Total internal reflection is the complete reflection of a light ray inside an optically denser medium at its boundary with an optically less dense medium. (iii) Im show TIR at the boundary + angle of incidence equal to the angle of reflection] (iii) Infrared radiation and convection [1] (b)(ii) E = (500)(60)(60) [1] = 1.8 × 10° J [1] (c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] (iii) Pd across the wires = 180 x 10.32 = 1850 V or 1800 V (iii) Pd across engine = 25 000 - 1854 = 23.1 kV 1 		white light		
 (ii) While light consists of different colours and each colour is refracted at a different speed [1] causing the colours to disperse (bends differently) as they pass from one optically dense medium to another. [1] (iii) In reflection, there is no change in the medium so there is no change in speed resulting in no dispersion of the white light. (b)(i) Total internal reflection is the complete reflection of a light ray inside an optically denser medium at its boundary with an optically less dense medium. (iii) Im show TIR at the boundary + angle of incidence equal to the angle of reflection] (iii) Infrared radiation and convection [1] (b)(ii) E = (500)(60)(60) [1] = 1.8 × 10° J [1] (c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] (iii) Pd across the wires = 180 x 10.32 = 1850 V or 1800 V (iii) Pd across engine = 25 000 - 1854 = 23.1 kV 1 		Both Correct to get 1m		
refracted at a different speed [1] causing the colours to disperse (bends differently) as they pass from one optically dense medium to another. [1] (iii) In reflection, there is no change in the medium so there is no change in speed resulting in no dispersion of the white light. (b)(i) Total internal reflection is the complete reflection of a light ray inside an optically denser medium at its boundary with an optically less dense medium. (ii) If $m = \text{show TIR}$ at the boundary + angle of incidence equal to the angle of reflection] 1 Total (b)(i) $E = (500)(60)(60) [1]$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(ii)	White light consists of different colours and each colour is	2	
disperse (bends differently) as they pass from one optically dense medium to another. [1] (iii) In reflection, there is no change in the medium so there is no change in speed resulting in no dispersion of the white light. (b)(i) Total internal reflection is the complete reflection of a light ray inside an optically denser medium at its boundary with an optically less dense medium. (ii) In show TIR at the boundary + angle of incidence equal to the angle of reflection] Total (b)(i) E = (500)(60)(60) [1]		refracted at a different speed [1] causing the colours to		
(iii) In reflection, there is no change in the medium so there is no change in speed resulting in no dispersion of the white light. Total internal reflection is the complete reflection of a light ray inside an optically denser medium at its boundary with an optically less dense medium. (ii)		disperse (bends differently) as they pass from one optically		-
change in speed resulting in no dispersion of the white light. (b)(i) Total internal reflection is the complete reflection of a light ray inside an optically denser medium at its boundary with an optically less dense medium. (ii) 1 (iii) 6 Total 6 3(a) Infrared radiation and convection [1] (Both correct to award 1m) 1 (b)(i) E = (500)(60)(60) [1] = 1.8 × 10° J [1] 2 (c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total 6 4(a)(i) R = 30 × 0.344 = 10.32 = 10 Ω 1 (iii) Pd across the wires = 180 × 10.32 = 1850 V or 1800 V 2 (iii) Pd across engine = 25 000 – 1854 = 23.1 kV 1		dense medium to another. [1]		
(b)(i) Total internal reflection is the complete reflection of a light ray inside an optically denser medium at its boundary with an optically less dense medium. (ii) [1m - show TIR at the boundary + angle of incidence equal to the angle of reflection] Total [6] [1m - show TIR at the boundary + angle of incidence equal to the angle of reflection] Total [6] [6] [6] [7] [7] [8] [7] [8] [8] [8] [8] [9] [9] [9] [9] [9] [9] [9] [9] [9] [9	(iii)	In reflection, there is no change in the medium so there is no	1	
ray inside an optically denser medium at its boundary with an optically less dense medium. (ii) [1m – show TIR at the boundary + angle of incidence equal to the angle of reflection] [1m – show TIR at the boundary + angle of incidence equal to the angle of reflection] [1m – show TIR at the boundary + angle of incidence equal to the angle of reflection] [1m – show TIR at the boundary + angle of incidence equal to the angle of reflection] [1m – show TIR at the boundary + angle of incidence equal to the angle of reflection] [1m – show TIR at the boundary + angle of incidence equal to the angle of reflection] [1m – show TIR at the boundary + angle of incidence equal to the angle of reflection increases of the angle of the angle of the standard the content of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] [1m – show TIR at the boundary + angle of incidence equal to the angle of incidence	41.3423	change in speed resulting in no dispersion of the white light.		
optically less dense medium. (ii) [1m – show TIR at the boundary + angle of incidence equal to the angle of reflection] [Total	(b)(i)		1	
(ii)				
[1m – show TIR at the boundary + angle of incidence equal to the angle of reflection] [Total	(ii)			
[1m – show TIR at the boundary + angle of incidence equal to the angle of reflection] Total (b)(i) E = (500)(60)(60) [1]	\'''		1	4 1 2
[1m – show TIR at the boundary + angle of incidence equal to the angle of reflection] Total (b)(i) E = (500)(60)(60) [1]				
[1m – show TIR at the boundary + angle of incidence equal to the angle of reflection] Total (b)(i) E = (500)(60)(60) [1]				
[1m – show TIR at the boundary + angle of incidence equal to the angle of reflection] Total (b)(i) E = (500)(60)(60) [1]				
to the angle of reflection] Total	-			
Total 3(a) Infrared radiation and convection [1] (Both correct to award 1m) (b)(i) E = (500)(60)(60) [1] = 1.8 × 10 ⁶ J [1] (ii) Mass of air = 5 × 4 × 3 × 1.25 = 75 kg [1] 1 (c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total 6 4(a)(i) R = 30 × 0.344 = 10.32 = 10 Ω (ii) Pd across the wires = 180 × 10.32 = 1850 V or 1800 V 2 (iii) Pd across engine = 25 000 - 1854 = 23.1 kV		[1m - show TIR at the boundary + angle of incidence equal		
3(a) Infrared radiation and convection [1] (Both correct to award 1m) 1		to the angle of reflection		
3(a) Infrared radiation and convection [1] (Both correct to award 1m) 1		T11		W1000 S.
(Both correct to award 1m) (b)(i)	2/2)		-	Cost Section
(b)(i)	3(a)	(Roth correct to award 1m)	1	
= 1.8 × 10 ⁶ J [1] (iii) Mass of air = 5 × 4 × 3 × 1.25 = 75 kg [1] (c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total 4(a)(i) R = 30 × 0.344 = 10.32 = 10 Ω (ii) Pd across the wires = 180 × 10.32 = 1850 V or 1800 V (iii) Pd across engine = 25 000 – 1854 = 23.1 kV		(Both correct to award 1111)		
= 1.8 × 10 ⁶ J [1] (ii) Mass of air = 5 × 4 × 3 × 1.25 = 75 kg [1] (c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total 4(a)(i) R = 30 × 0.344 = 10.32 = 10 Ω (ii) Pd across the wires = 180 × 10.32 = 1850 V or 1800 V (iii) Pd across engine = 25 000 – 1854 = 23.1 kV	(b)(i)	E = (500)(60)(60)[1]	2	
(c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total 6 4(a)(i) R = 30 x 0.344 = 10.32 = 10 Ω 1 (ii) Pd across the wires = 180 x 10.32 = 1850 V or 1800 V 2 (iii) Pd across engine = 25 000 – 1854 = 23.1 kV 1	,-,,-,		-	
(c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total 6 4(a)(i) R = 30 x 0.344 = 10.32 = 10 Ω 1 (ii) Pd across the wires = 180 x 10.32 = 1850 V or 1800 V 2 (iii) Pd across engine = 25 000 – 1854 = 23.1 kV 1				
(c) The fan should be placed at the bottom of the bedroom as it will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total 6 4(a)(i) R = 30 x 0.344 = 10.32 = 10 Ω 1 (ii) Pd across the wires = 180 x 10.32 = 1850 V or 1800 V 2 (iii) Pd across engine = 25 000 – 1854 = 23.1 kV 1	(ii)	Mass of air = $5 \times 4 \times 3 \times 1.25 = 75 \text{ kg} [1]$	1	
will heat up the air there. When temperature of the air increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total 6 4(a)(i) R = $30 \times 0.344 = 10.32 = 10 \Omega$ 1 (ii) Pd across the wires = $180 \times 10.32 = 1850 \text{ V}$ or 1800 V 2 (iii) Pd across engine = $25000 - 1854 = 23.1 \text{ kV}$				
increases, its volume expands and its density decreases. [1] This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total 4(a)(i) $R = 30 \times 0.344 = 10.32 = 10 \Omega$ 1 (ii) Pd across the wires = $180 \times 10.32 = 1850 \text{ V}$ or 1800 V 2 (iii) Pd across engine = $25000 - 1854 = 23.1 \text{ kV}$	(c)	The fan should be placed at the bottom of the bedroom as it	2	
This causes it to rise and the cooler air at the top of the room, being denser will sink. Convection currents are set up to effectively heat up the room. [1] Total 4(a)(i) R = $30 \times 0.344 = 10.32 = 10 \Omega$ (ii) Pd across the wires = $180 \times 10.32 = 1850 \text{ V}$ or 1800 V 2 (iii) Pd across engine = $25000 - 1854 = 23.1 \text{ kV}$		will heat up the air there. When temperature of the air		
room, being denser will sink. Convection currents are set up to effectively heat up the room. [1]		increases, its volume expands and its density decreases. [1]		
to effectively heat up the room. [1] Total 4(a)(i) R = 30 x 0.344 = 10.32 = 10 \Omega (ii) Pd across the wires = 180 x 10.32 = 1850 V or 1800 V (iii) Pd across engine = 25 000 - 1854 = 23.1 kV 1		room, being denoacy will pink. Consent at the top of the		
Total 6 4(a)(i) R = 30 x 0.344 = 10.32 = 10 Ω 1 (ii) Pd across the wires = 180 x 10.32 = 1850 V or 1800 V 2 (iii) Pd across engine = 25 000 - 1854 = 23.1 kV 1	-	to effectively heat up the man. [1]		
4(a)(i) R = 30 x 0.344 = 10.32 = 10 Ω 1 (ii) Pd across the wires = 180 x 10.32 = 1850 V or 1800 V 2 (iii) Pd across engine = 25 000 - 1854 = 23.1 kV 1		to effectively fleat up the room. [1]		
4(a)(i) R = 30 x 0.344 = 10.32 = 10 Ω 1 (ii) Pd across the wires = 180 x 10.32 = 1850 V or 1800 V 2 (iii) Pd across engine = 25 000 - 1854 = 23.1 kV 1		Total	-	
(ii) Pd across the wires = 180 x 10.32 = 1850 V or 1800 V 2 (iii) Pd across engine = 25 000 - 1854 = 23.1 kV 1	4(a)(i)		-	- 16 3 - 17 - 15 - 17 - 17 - 17 - 17 - 17 - 17
(iii) Pd across engine = 25 000 – 1854 = 23.1 kV	.(3/(4)	11 22 11 010 11 11 100 2 - 10 12	1	
(iii) Pd across engine = 25 000 – 1854 = 23.1 kV	(ii)	Pd across the wires = 180 x 10.32 = 1850 V or 1800 V	2	
	,	1000 F 61 1000 F	-	
	(iii)	Pd across engine = 25 000 - 1854 = 23.1 kV	1	
(iv) P = VI = 23 142 x 180 = 4 165 560 = 4.17 MW 2	, ,		-	
	(iv)	P = VI = 23 142 x 180 = 4 165 560 = 4.17 MW	2	
			-	
(b) As the distance increases, the pd across the overhead wire 1	(p)	As the distance increases, the pd across the overhead wire	1	
increases and hence the pd across the engine decreases.		increases and hence the pd across the engine decreases.		

2

Scanned with CamSca

	Therefore, the power supplied to the engine decreases affecting the performance of the engine.		Lyda -
(c)	Current chooses the path of negligible resistance. The railway employee does not receive a shock as the track has a negligible resistance compared to his body so the current will not go through him.	1	
	Total	8	
5(a)	It is a point where the whole weight of the object seems to act for any orientation. [1]	1	
(b)	Taking moments about Q. CW = ACW moment moment F x 0.90 = 20 [1] F = 22 N (2 s.f.) [1]	2	, ,
(c) (i)	The anticlockwise moment of the weight of the plank about Q is equal to the clockwise moment of the unknown weight about Q; hence there is no tension and hence no reading in spring balance at P.[1]	1	
(ii)	Let $F_P = 0 \text{ N}$ Taking moments about Q. CW moment = ACW moment W x 0.10 = 20 W = 200 N [1]	1	6.8
	Total	5	
6(a)(i)	An electric field is a region where an electric charge would experience an electric force.	1	
(ii)	power supply	1	Parallel lines and slight bulge at the ends. No mark awarded if no or wrong arrows.
			Show charge

(ii)	Cower supply	1	
	When the power supply is turned on, the free electrons on the ball are attracted towards the positive plate. The attractive force causes the ball to move towards the positive plate because the ball is closer to the positive plate than to the negative plate. When the ball touches the positive plate, free electrons on the ball flow to the plate leaving the ball with a net positive charge. As like charges repel, the ball swings towards the negative plate. [1] When the ball touches the negative plate, free electrons flow onto the ball, neutralising the positive charges and giving the ball a net negative charge. The ball is repelled and swings towards the positive plate and the cycle repeals. [1]	2	
200712			
	Total	6	
7(a)	Ammeter reading: 0.013 A [1] Voltmeter reading: 6.0 V [1]	2	
(b)(i)	Ammeter reading = 6.0 / (1/450 + 1/4800) ⁻¹ [1] = 0.015 A [1] Voltmeter reading: 4.5 V [1]	3	
(ii)	Voltmeter reading: 3.0 V [1]	1	
(iii)	As temperature falls, resistance of thermistor increases causing pd across lamp to increase [1] so the bulb gets brighter. [1]	2	
William.	Total	8	;
8(a)	Ultrasound is a type of longitudinal wave [1] with a frequency higher than 20 kHz.[1]	2	
(b)	Let distance between the device and the opposite wall be d. Speed of sound= 340 x 0.030 = 2d [1] 2d= 10.2 d= 5.1 m (2 s.f.)[1	2	
AND THE	Total	4	
9(a)	The state of the s	1	
(b)	V = $f\lambda$ $\lambda = v / f = 3.0 \times 10^9 / 2500\ 000000\ [1]$ = 0.12m [1]	2	

Scanned with CamSca

(c)	DETENAYS beam / W ◆	1	
		3	d=3, P= 750 [1]
		1	d=6, P= 300 [1]
	800	İ	d=6, P = 120 [1]
		ł	, , , , , , , , , , , , , , , , , , , ,
		1	Line of best fit
		ı	Line of Best Inc
	400	1	
1			
1			
	0		
1	0 3 6 9	_	Ì
İ	GESTI WILLIAM 1000 /	"]	
1		i	
(d)	When d = 5 mm, P = 160 to 180 W [1]	1	
(e)	Pt = $mc \Delta \Theta + ml$	3	
	$750 \times t = 0.25(2100)(18)[1] + 0.251[1]$	3	
	t = 130 s [1]		
7 1	Total	10	AND THE SALES
10 a	●B: North	1	
	C: South		
(b)(i)	Conventional current flows in the rectangular coil in the	2	
-	direction PQRS. The current carrying coil creates a circular		
	magnetic field around the wire PQRS; this magnetic field		
	interacts with the external field from the 2 solenoids [1].		
	This creates a force on the sides of the coil (PQ and RS)		
	which produces a turning effect that causes the coil to turn		
	about the pivot, [1]		
	[·]		
(ii)	Vertical downward force on PQ; and a vertical upward force	1	
	on RS [1]		
(iii)	Split ring commutator reverses the direction of the current	2	
	flow through the rectangular coil once every half a rotation.		
İ	[1]		
İ	Construction in the state of th		
1	Consequently, direction of force also reversed (when	1	
İ	compared to initial state) so that the force continued to be in		
1	the same direction. Thus allowing the coil to continue rotating in the same direction. [1]		
	in the same direction. [1]		
(c) (i)	Since the coil was already rotating, inertia of the coil will	1	
.,,,	continue to cause the coil to turn [1] so that the split rings	1	
	and carbon brushes come into contact.		
	(Accept momentum)		
	There will be an increased in the frequency of rotation as a	1	
(ii)			
(ii)	bigger current creates a stronger magnetic field around the		
(ii)	bigger current creates a stronger magnetic field around the coil PQRS which will interact with the external magnetic field		
(ii)	bigger current creates a stronger magnetic field around the coil PQRS which will interact with the external magnetic field to create a bigger force that will cause the coil to turn faster. [1]		

(d)	Yes. [1] By moving the 2 solenoids closer together will bring the external magnetic field closer to the coil PQRS. Since the magnetic field is a distance dependent field, a stronger external magnetic field produces a greater interaction of the magnetic fields, thereby producing a bigger force[1] on the coil; hence a greater turning effect and thus faster rotation of the coil.	2	
94 O'E	Total	10	
11E	ALL THE RESERVE OF THE PERSON		_
(a)	Displacement is defined as the distance travelled in a specific direction	1	
(b)(i)	20-30s:	3	
	Object decelerates uniformly at a constant rate of 5.0 m/s².[1] 30-35s: Object moves in the opposite direction [1] and accelerates uniformly at a constant rate of 2.0 m/s². [1]		
(ii)	Total displacement	2	
	= $\frac{1}{2}$ x 50 x (15+30) + $\frac{1}{2}$ x 10 x (10+5) [1] = 1125 - 75 = +1050 m [1] 2. Average velocity = 1050 /40 = 26 m/s.	1	
			961)
(c)	displacement / m	3	
	4		
	1200 1100 900 900 900 600 500 400 300 200 1005 0 5 10 15 20 25 30 35 40 time /	S	
	annonriate displacement value	+	
	appropriate displacement values on vertical axes written and points correctly plotted. [1]		
	0 to 30s: graph correctly drawn [1]		
	g [and and []		

Scanned with CamSca

	30 – 40s: turning point at 30s and graph correctly drawn [1]		
	Total	D-2 87.2	
110R (a)	KE = $\frac{1}{2}$ mv ² = $\frac{1}{2}$ (0.5)(5.0) ² = 6.25 J [1]	10	
(b)		1	
	Loss in GPE = mgh = (0.5)(10)(3) = 15.0 J [1]	•	
(c)	The second of th	2	
	GPE + KE (initial) = KE (lowest point) + Ave WD against friction 15 + 6.25 = ½ (0.5)(8)² + Ave WD against friction [1] 21.25 = 16 + Ave WD against friction Ave WD against = 21.25 - 16 friction = 5.25 J [1]		
(d) (i)	Power is the rate at which work is done or energy is	1	
	converted. [1]	_	N 11 1
(ii)		2	
	Energy lost = KE at lowest point = $\frac{1}{2}(0.5)(8)^2$ = 16.0 J [1]		
	Power = E/t = 16/0.25		
	= 64.0 W [1]		
(iii)	Kinetic energy was converted into sound and heat. [1]	1	
(e)(i)	Both forces are acting on the same body; hence they do not qualify as an action-reaction pair. Or one is a contact force and the other is a non-contact force; hence they do not qualify as an action-reaction pair.		
(ii)	The arresting device exerts an equal but opposite force of 25N acting on the Earth.	1	
100	Total *	10	